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CNIU Center Number 1-52165

ABSTRACT

The thrust of this research concerns associative processors. Many new aspects exist in this

effort: large storage capacity, use of storage density as a measure of efficiency, use of new

output recollection vector encoding schemes, general 1:1 and pattern recognition many:l

associative processors, new algorithms and architectures and applications and laboratory

realization.
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CHAPTER 1

"Introduction"

In the first y'ear of this effort, we completed one PhD (B. Telfer) and one M.S. (K. Haines), plus

5 research papers 11-51. The major new associative processor (AP) algorithm we use is the Ho-

IKashyap (1-1K) AP synthesis [1]. It is the best AP. It has many variants for noise (Robust 1 and

Robust 2 that concern two different starting matrices; Robust 2 is the best and is used

extensively) and variants for storage capacity/density [we use non-unit-vector encoding for best

results and refer to these as content addressable APs (CAAPs) and variants for improved

performnance (minimum error cost, etc.).

Chapter 2 provides our general 1:1 memory AP results [3] (we can store more than any other

AP). This also includes new CAAP concepts and our AP storage density calculations. Chapter

3 provides our many:1 pattern recognition AP results [2]. Again, we have stored far more with a

much better storage capacity and storage density than any other AP. Our new minimum cost

H11K AP with quadratic decision surfaces is briefly introduced [4] in Chapter 4. This represents

enormous potential and will be pursued in our Year 2 work. Our hierarchical AP results [5] are

noted in Chapter 5. This is the first use of multiple APs.

"Year 2 Plans"

Our Year 2 plans are now noted. We will complete and detail (August/September 1991) our

initial AP ,aL,,-r.tory results [6]. We plan to redo these extensively with much better error

source analyses and with new optical laboratory results (perfect results) suitable for analog

optical or VLSI realization [7]. We hope to complete a second M.S. and formulate PhD plans

beyond Year 3. \Ve will complete documentation in a neural network journal of oiur !c,1!r, AP

dX'i encr'ad AP work 8-9.
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HO-KASHYAP CAAP 1:1 ASSOCIATIVE PROCESSORS
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Department of Electrical and Computer Engineering
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ABSTRACT

We advance new associative processor (AP) synthesis algorithms and performance measures.
We compare 10 different 1:1 APs (where each input key vector is associated with a different output
recollection vector). We find that unless new output recollection vector encoding techniques are
used, APs are not competitive. We find the robust Ho Kashyap-2 CAAP (content addressable AP) to
be preferable and that the rsyn parameter used in it should not be chosen larger than necessary.

1. INTRODUCTION

APs represent a major class of neural net (NN) for noisy and partial inputs (autoassociative AAPs),
for pattern recognition (heteroassociative HAPs), and to guide knowledge base queries [1-3]. We
consider 1:1 APs in this paper. Many:1 APs have many different keys (distorted versions of one
object class) associated with the same output recollection vector and are used in distortion-invariant
pattern recognition (PR). The 1:1 APs we consider are suitable for general memory APs, AAPs, and
for large class PR cases. Our results are appropriate for few:1 cases. Section 2 briefly reviews the
10 APs we consider. Section 3 notes the AP issues and performance measure we find important and
our AP test procedure. Section 4 presents our data and Section 5 advances our conclusions.

2. ASSOCIATIVE PROCESSORS (APs)

Figure 1 shows the basic AP architecture we consider and Table 1 summarizes our notation. The
10 AP synthesis algorithms we consider are now briefly summarized. All are detailed more fully
elsewhere [1,2). All solve M X = Y for the AP matrix M to be satisfied for all (x where the and

Ym are the columns of X and Y.

The direct storage nearest neighbor (DSNN) AP is the norm. Its solution is M = XT (the data
matrix). It requires K = M which is large but not appreciably larger than for other standard APs (when K
= N). Its major disadvantage is that it requires winner take all (WTA) output post processing which
can become computationally intensive. This is the only nearest-neighbor AP. We extended this
DSNN algorithm to analog keys with the addition of an extra key vector element.

TThe correlation AP or vector outer product (VOP) AP solution is M = Y X . Its disadvantage is a

7



~2

N K

x M Y

FIGURE 1: Optical matrix-vector associative processor.

NOTATION

SYMBOL TERM

x INPUT KEY VECTOR
my OUTPUT RECOLLECTION VECTOR
M ASSOCIATIVE MEMORY MATRIX

N DIMENSION OF INPUT
K DIMENSION OF OUTPUT
KxN SIZE OF MEMORY
M NUMBER OF STORED KEY/RECOLLECTION

VECTOR PAIRS

TABLE 1: Associative processor notation.

very low storage M < N. Preferable APs are obtained using linear algebra rather than biologically
motivated techniques. The pseudoinverse AP solution is M = M+ = Y X = Y(xTx)-lxT (where the last
equality is true only for linear independent key vectors). Its storage is better (M < N and M > N) and it
minimizes J1 = IlY - M XII 2 with respect to M. The solution is exact only for linearly independent keys
and its performance in noise is poor when M - N (these are its disadvantages). The Ho-Kashyap
(HK) AP is the best. It minimizes J, with respect to both M and Y by varying M and the recollection
vector choices. It iteratively (in synthesis only) improves the M+ solution. Its M = 2N storage is the
largest of any AP and it handles linearly dependent key vectors (these are its two advantages) [4].
Two robust AP algorithms exist to improve noise performance with M -, N. The first [5] uses M1 (with
small eigenvalues omitted). The second [6] includes noise (N and a syn) in synthesis by minimizing J2

E{IjY - M(X + N)112) with the solution being M = Y XT(x XT + Ma2 ') . These two robust solutionsSyn
for M are denoted as Pseudoinverse-1 and -2 APs and HK APs using these as starting matrices are
denoted as HK-1 and HK-2 APs. When non-random and non-unit recollection vector encodings are
used, we refer to these as CAAPs. We use these encodings with the best APs and obtain a
Pseudoinverse-2 CAAP and an HK-2 CAAP.

8



3. AP ISSUES AND PERFORMANCE MEASURES

We feel that analog keys and matrices are necessary to be competitive. They are also very
attractive and necessary for analog VLSI and optical APs, where an analog accuracy is as easily
achieved as is digital data. In practice, the keys will be feature vectors to reduce AP size (N), training
set size and storage (M), and to achieve distortion-invariance. Our APs are suitable for analog VLSI
and optical realization. We use linear algebra (not biologically motivated APs) to achieve storage M >
N (this is necessary for APs to compete). We use linear algebra to produce one pass (not iterative)
APs (since they are faster and require fewer matrix-vector calculations in classification). Our
algorithms are also optimum in noise and inherently allow analog accuracy (this is inherent in the
algorithm, rather than ad hoc).

As performance measures we use storage density (M/NK = storage/memory size) rather than just
M. We use Pc1 (the percentage of recollection vectors completely correct) rather than Pc (the

percentage of recollection vector elements correct). For the preferable CAAPs, we must use PcI and

in general only ? is meaningful. We consider only reasonable PC levels (90%, 95% and 99%) and we

consider low Pc= 60% levels to be useless. In our AP data, we will list the maximum M/N for which

we can achieve a specified PC'. Our data are the average of 10-100 AP runs. Other AP issues of

concern in comparisons include extensive pre- and post-processing, including WTA (which we find
unrealistic), and the ease of updating the APs [7].

For the 1:1 APs considered here, the keys are analog random elements uniformly distributed
[-1,1] and the recollection vector elements are random binary +1 for the standard APs. We test
these APs with input noise with standard deviation an and by quantizing the input, matrix, and output.
To model limited accuracy inputs with 6 being the separation between resolvable levels (e.g. for 16
levels (4 bits) between 0 and 1,6 = 1/16), we use an = 6/121/2. For a 1% accurate processor (with 3a
99% confidence) we use an = 0.003. The a. = 0.1 etc. levels we use thus model noise in the input

image.

4. 1:1 AP TEST RESULTS

4.1 STORAGE DENSITY (THEORETICAL)

Table 2 lists the theoretical storage capacity and density for the 6 major APs as N-oo. The
storage density is quantified for N = 50. As seen, the correlation AP is the worse, the DSNN is
comparable to the pseudoinverse and the HK AP is twice as good. Only the CAAPs provide
appreciably better performance than the DSNN. The CAAP figures assume binary encoded
recollections (we consider other encoding types in Section 4.4).

4.2 PERFORMANCE COMPARISON

Table 3 lists the maximum M/N obtained in laboratory tests for Pc' = 95% for eight APs with N = K =

50 with various amounts of noise an present. The DSNN used M = K = N and M = K = 2N. The robust
APs used asyn = 0.1 in synthesis. As seen, the DSNN performs best (largest M = N or 2N independent
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of noise). Table 4 lists the storage density of these 8 APs. As seen, the DSNN is still best. This
clearly indicates that standard APs cannot compete with the DSNN. We note that DSNN storage of M
= 20N was obtained with no degradation in noise. The large WTA required is a disadvantage of the
DSNN, but it is the only nearest neighbor AP and its storage and storage density and noise
performance are best.

For completeness, we discuss these AP data, ignoring the DSNN. We showed earlier [4] that the
non-robust APs have poor noise performance near M - N and that the robust-1 APs overcome this
problem and maintain high PC for M > N. The correlation AP is the worst and the HK AP is the best. The
standard HK performs better than the pseudoinverse. The robust algorithms perform better for an =
0.1 (since 'syn = 0.1) and worse with no noise exact keys (as expected). When the pseudoinverse
and HK AP performance are the same, this occurs due to the low M/N for which the pseudoinverse
solution gave Pc = 100% for exact keys and hence no HK iterations occurred. In our CAAPs, the HK
improvement will be more noticeable. In the many:1 APs that we are currently developing, the HK
improvement is even more noticeable.

4.3 CAAPs

Table 5 lists the maximum M/N for P > 95% for binary encoded recollection vectors with K = 7

(since 27 > 2N = 100). All APs (except the DSNN with M = K) have a 7x50 element matrix and a
storage density (M/N)/7. Table 6 lists the storage density of these APs. These data sho N clearly
that only with different recollection vector encodings can APs outperform the DSNN. These data also
show more clearly the advantage of the different APs. The robust HK-2 CAAP is always preferable (it
will never be worse than the robust pseudoinverse-2 CAAP).

4.4 CAAP ENCODING

For the HK-2 AP (the best AP), we consider four different recollection vector encodings: binary,
and two standard error correcting techniques (Hamming and BCH [8]), and L-max [9]. All use 7 data
bits. Binary uses K = 7, Hamming uses K = 11 (4 bits to allow error correction of 1 data bit) and BCH
uses K = 15 (8 bits to correct 2 data bit errors). L-max encoding uses L-ones in a K-bit output; the
two cases we consider are (L=2, K=14) and (L=3, K=9). Table 7 shows the maximum M/N for P' >
95% for each case with different levels of noise n" The n = 0 performance is not of interest. The on
0.1 = Osy n data is easily compared. Comparing the binary to Hamming and .BCH data, we see the
improvement offered by standard error-correction. We note that the L-max performance is the best
or nearly so. We find L-max encoding to be preferable because ot its high-storage capacity and
because Hamming and BCH require additional post processing (Hamming reauires an extra matrix-
vector multiplication and BCH requires an extra matrix-vector multiplication followed by an iterative
procedure). L-max encoding works well because it produces sparse recollection vectors. It requires
WTA detection of the L largest output recollection vector elements (this is acceptable with the low K
used). We choose L-max (L=2, K=14) since the 50% improvement in M/N for doubling K is
acceptaole (with the low K used). With L-max encoding we can represent

K I= K!()
L (K-L)!L! (1)

vector pairs or 84 vectors (L=3, K=9) and 91 vectors (L=2, K=14) for the 2 cases considered.
Standard error-correction encodings are not best in APs.
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4.5 Pr VS. PC

C *CIf PCwere used as ou~r performance measure rather than PC, we obtained M/N values 30-50T

larger. With CAAP encoding (which is necessary for performance exceeding thift of the DSNN), PC is
meaningless.

4.6 QUANTIZATION TESTS

To demonstrate that analog accuracy suffices, we quantized the input, memory, and output
elements to B bits. For the results in this section, we used unipolar (0,1) analog keys. To keep the
input SNR at the same levels as in our other tests, we halved the input noise levels to an = 0.025, 0.05
and 0.10. We found no performance loss with 6, 8, 8 (input, memory and output) bits for cn = 0.025,
0.05 and 0.10. For 6, 6, 8 bits, we find no performance loss foran = 0.05 and 0.10 (when the HK-2
CAAP with binary-encoding was used with asyn = 0.05). Thus, we conclude that 6-8 bit accuracy

suffices and that arsy n can control this. We also verified thean = 6/121/2 relationship between an and
the number of levels present in the processor.

4.7 NUMBER OF HK ITERATIONS

We now consider our new HK algorithm that significantly reduces the number of HK iterations
required (these iterations are only required in synthesis, classification is a one-pass system) and
quantitative data on how M/N affects whether the HK-2 algorithm improves the pseudoinverse-2
solution (if it yields Pc = 100% on noiseless data, no HK iterations occur). We consider only the HK-2
CAAP with N = 50 random analog keys. In the original HK algorithm [4], we used p = 0.5 in synthesis
and we iterated on the matrix as a whole. Since each row of M converges at a different rate, we now
iterate on each row separately and use p = 0.95. Table 8 shows the average number of HK iterations
as a function of M/N for the five different output encodings. Each entry is the average of 10 memory
matrices and are a.eraged ovei each memory row for each of the 10 matrices. Entries less than 1
indicate that an occasional HK iteration occurred, but generally the HK algorithm was not used (this
occurs for M/N < 1.12). For M/N > 1.12, entries above 1 occur indicating that HK iterations improve
the pseudoinverse-2 solutions. These numbers are all very small (a factor of 100 less than in the
original algorithm [4]).

4.8 a-, SELECTION

In tests, we showed that the noise performance is optimum at the asyn used, that good noise
performance results for lower an' and that one should use asyn no larger than is necessary.

4.9 BINARY VS. ANALOG KEYS

To compare M/N when binary vs. analog keys are used, we synthesized an HK-2 CAAP with L=2,
K=14 encoding with N = 50 bipolar binary keys with arsyn = 0.4. The an = 0 analog and O-bits flipped
data in Table 9 show that storage is larger when analog keys are used. This occurs because we used
an = 0.4 for the binary keys vs. an = 0.1 for the analog keys. Tests with 0 to 3 input bits flipped show
that our robust algorithms are also useful with binary keys (asy n = 0.4 corresponds to an SNR, = 8dB or
2 of the 50 bits in error). As seen, L-max encoding yields preferable results to binary encoded
recollections.

11



5. SUMMARY AND CONCLUSIONS

We have advanced several issues we feel are important in APs. The need to store M > N
key/recollection vector pairs and handle linearly dependent keys, and the need for analog feature
space key vectors are among the most important. We gave two new performance measures: storage
density (not just M) and P' (not P We find that no 1:1 AP can compete with the DSNN unless

alternative recollection vector encoding schemes are used. In such cases, CAAPs result and P'I must
be used (as PC is meaningless). We showed that CAAPs offer an order of magnitude improvement in
storage density, that robust HK-2 APs are preferable, and that their rsy n parameter should not be
selected larger than is necessary.

Various other point advanced are now highlighted. When M < 1.1 2N, we find that the HK iterations
do not significantly improve the performance of the pseudoinverse AP. For CAAPs, we find the HK
improvement to be more noticeable. For many:1 APs, this improvement will be even larger. Our
revised HK algorithm requires much fewer iterations than the original algorithm. We find that all APs
allow quantization with 6-8 bit inputs and memories being sufficient and that the robust algorithms can
control the accuracy required. We find L-max and binary encoding to be preferable since no post-
processing is required (L-max encoding yields better performance because of the sparse vectors it
produces). Standard error-correcting techniques do not appear to be best for APs. If the CAAP is
used to access a standard memory, then a large capacity error correcting general memory results
(suitable for large knowledgebase searches).
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MEMORY STORAGE MEMORY SIZE STORAGE STORAGE
TYPE CAPACITY NK DENSITY DENSITY

M M/NK (N=50)

DSNN M - o NM 1/N 0.020
Correlation N/41nN N2  1/4NInN 0.001
Pseudoinverse N N2  1/N 0.020
HK 2N N2  2/N 0.040
Pseudoinverse CAAP N Nog2N 1/Iog2N 0.177
HK CAAP 2N N+Nlog2N 2/(1 +og2N) 0.301

TABLE 2: Theoretical storage capacities and densities for
different 1:1 associative processor models for exact key inputs.

an DSNN CORREL PSEUDOINV HK PSEUDOINV-1 HK-1 PSEUDOINV-2 HK-2

0.00 1,2 0.12 1.04 1.52 0.84 1.52 0.96 1.12
0.05 1,2 0.12 0.88 0.88 0.84 0.88 0.92 0.92
0.10 1,2 0.12 0.72 0.72 0.76 0.76 0.80 0.80
0.20 1,2 0.12 <0.6 (0.6 <0.6 <0.6 <0.6 <0.6

TABLE 3: Maximum storage M/N for P' > 95% for eight APs (with N = K = 50).
(The DSNN used M = K = N and M = K =2N. For the robust APs, osyn = 0.1).

an DSNN CORREL PSEUDOINV HK PSEUDOINV-1 HK-1 PSEUDOINV-2 HK-2

0.00 0.02 0.0024 0.021 0.030 0.017 0.030 0.019 0.022
0.05 0.02 0.0024 0.018 0.018 0.017 0.018 0.018 0.018
0.10 0.02 0.0024 0.014 0.014 0.015 0.015 0.016 0.016
0.20 0.02 0.0024 <0.012 <0.012 <0.012 (0.012 <0.012 (0.012

TABLE 4: Storage densities M/KN for PC > 95%
for the eight APs in Table 3 (with K = N = 50).

an  DSNN CORREL PSEUDOINV HK PSEUDOINV-2 HK-2

0.00 1,2 0.36 1.20 >1.60 1.12 >1.60
0.05 1,2 0.32 0.92 0.92 1.08 1.32
0.10 1,2 0.24 0.80 0.84 0.92 0.92
0.20 1,2 0.20 (0.60 (0.60 (0.60 (0.60

TABLE 5: Maximum storage M/N for P 1 > 95% for six CAAPs
with N = 50 random analog inputs and K = 7 binary (+1) encoded recollections.

The DSNN used M = K = N and M = K = 2N. The robust APs used csyn = 0.1.
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(n )SNN Correl Pseudoinv 11K Pseudoinv=2 11K-2
0.00 0.02 0.051 0.171 >0.229 0.160 >0.229
0.05 0.02 0.046 0.131 0.131 0.154 0.189
0.10 0.02 0.034 0.114 0.120 0.131 0.131
0.20 1 0.02 0.029 <0.086 <0.086 <0.086 <0.028

Table 6: Storage densities M/KN for Pc > 95% for the six CAAPs in Table 5.

PC, en Recollection Vector Encoding (7 Data Bits)
(%) Binary Hamming BCH L-max (L ones)

(K = 7) (K = 11) (K = 15) K = 14(L = 2) K = 9(L = 3)
0.00 1.84 1.48 1.56 1.68 1.64

>95 0.05 1.36 1.40 1.52 1.64 1.48
0.10 0.92 1.20 1.36 1.48 1.20
0.20 0.60 0.76 0.84 0.96 0.72

Table 7: 1:1 CAAP tests of different recollection vector encodings. The maximum M/N for Pc > 95% is

given for the IIK-2 CAAP with N = 50 random analog keys and au,1  0.1.

MIN = M/50 0.80 0.88 0.96 1.04 1.12 1.20 1.28 1.36 1.44 1.52 1.60
binary encoded (K=7) 0 0.0143 0.0186 0.124 0.339 1.09 1.05 2.29 3.74 5.56 8.08

L-max(L=2,K=14) 0 0.0229 0.154 0.504 2.20 5.39 9.93 15.7 22.2 25.6 28.1
L-max(L=3,K=9) 0 0.0611 0.0756 0.627 1.38 3.61 6.97 10.4 15.2 19.7 23.8
Hamming (K=11) 0 0.0227 0.0491 0.475 1.72 5.03 9.61 14.7 21.2 26.6 28.2

BCH (K=15) 0 0.0140 0.0560 0.620 1.95 4.51 9.55 15.9 21.4 27.0 28.2

Table 8: Average number of iterations required to synthesize an HK-2 CAAP for different M/N

values and different recollection vector encodings with N=50 analog keys.

BINARY ENCODED OUTPUTS IL=max(L=2) ENCODED OUTPUTS

Analog Keys BINARY BIPOLAR KEYS BINARY BIPOLAR KEYS
(number of errors) (number of errors)

P= 0.0 0 1 2 3 0 1 2 3
>90% 2.04 1.52 0.80 0.60 <0.6 1.68 1.36 1.04 0.92
>95% 1.84 1.32 0.68 <0.6 <0.6 1.44 1.16 0.96 0.72
>99% 1.52 0.92 0.60 <0.6 <0.6 1.24 1.04 0.72 <0.6

Table 9: Maximum M/N for which the given Pc is obtained for N = 50 binary bipolar keys (with 0 to 3

input bit errors) with two different recollection vector encodings for an ItK-2 CAAP1 with a,,,, = 0.4 (for

comparison, analog key data with a, 0.1 are included).
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CHAPTER 3

"Ho-Kashyap Advanced Pattern Recognition
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Abstract

We review different categories of associative processors with-attention to the properties of their key and recollection
vectors, the test procedures to be used and the performante measures to be used to compare various associative
processors. We review new pseudoinverse and Ho-Kashyap associative processors and robust versions of each.
Quantitative data is presented on the performance of these new pattern recognition associative processors. In all
cases we show significant improvement over prior data with M > N (M is the number of key/recollection vectors
pairs stored and N is the dimensionality of the input key vector). Quantization of the number of analog levels
and comparisons of various recollection vector encodings are considered.

1 Introduction

We consider optical associative processors (APs) for pattern recognition (PR). The basic architecture used
(Figure 1) is the standard optical matrix-vector processor. P1 contains the input key vector (dimension N), the
associative processor matrix of size K x N is at P2 , and the output recollection vector (of dimension K) is at
P3 . The number of key/recollection vector pairs stored is M. Section 2 advances vital remarks on the various
types of APs, key and recollection vector properties of each, test procedures for each and performance measures
to be used for comparing various APs, key and recollection vector properties of each, test procedures for each and
performance measures to be used for comparing various APs. Section 3 briefly reviews the various AP synthesis
algorithms we consider and Section 4 provides quantitative test data.

2 Associative Processors (Performance Measures, Test Procedures
and Comparison Issues)

The major types of APs are noted and remarks are advanced on the nature of the input/output key/recollection
vectors for each, the test procedures to be used with each (Sections 2.1-2.7), and performance measures and
comparison measures (Section 2.8) to be used.

2.1 General Remarks

We note that analog input data are essential for optical APs to compete and that AP algorithms must inherently
include (within the algorithm) techniques to allow limited analog accuracy. Our robust and error-correcting
algorithms achieve this. All APs we consider use one pass (not iterative recall) and are preferable. We first
advance remarks on APs for image data. No AP (except the symbolic correlator neural network (NN) production
system [1,2]) allows use of multiple input objects in the field of view in parallel. APs and NNs using iconic
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(pixel-based) input neuron representations are not attractive and feature space input neurons should be used (to
reduce neuron dimensionalitv and storage M requirements).

All AP matrices M are analog. We test all APs for analog performance using quantized M values (and quantized
input and output values). Quantized output values allow output WTA (winner take all) or maximum selection
post processors to have output WTA errors. These quantization tests test the APs' analog (optical) performance.
For optical implementations, negative values must be encoded. All AP matrices are bipolar. This requires twice
the number of key and recollection elements (or twice the processing time plus the need to alter M for positive M+
and negative M- values). Thus, we use space multiplexing of M data in all cases. Bias and other [3] methods
increase M dynamic range requirements, but may [3] be useful to overcome certain optical component bias errors.

The amount of noise and the nature of the noise added to the key inputs varies with the application. For
input P SLMs (spatial light modulators) or point modulators, the noise standard deviation a. is related to the
separation b between useful gray levels by a, = 6/121. For SLMs or point modulators with 2, 4, and 6 bits
of gray scale and a full scale value of 1, we find o,, = 0.072, 0.018, and 0.0045. For a given analog accuracy
MPFSE (maximum percent full scale error), we find a,, = (MPFSE)(FS)/(3 x 100%), where FS is the full
scale value (typically 1). This is the 3o 99% confidence value. Thus, for a 1% analog processor which is typical
(MPFSE = 1%), we find a,, = 0.003 or a,, = 0.003 (with 6 = 0.01) will model this. All of these a, accuracy
values are quite low and thus input noise ai added to the key vectors will be larger (we use aj = 0.1) and due to
noise in the input image data (not processor errors). Our robust algorithms include ai directly in the algorithm
and cAlculate M for best performance in that ai noise. For simplicity, we add noise to the input image feature
vectors (rather than the images). We use uncorrelated noise (UCN) of zero-mean with negative noise pixels set to
zero. We renormalize the input feature vector after noise is added (this is required for distortion invariance (DI)).
White Gaussian noise (WGN) and UCN are realistic for the point noise in characters. Dirt, clouds, image clutter,
etc. are modeled by correlated noise (CN) and blobs (false class and discrimination tests are somewhat suitable
here).

The ability to easily update (add and delete key/recollection vector pairs) is an issue but is not a major real
time concern. We have addressed this [4] and note that our new robust-2 algorithm easily allows this and that in
multiple AP cases, only one AP need be updated.

Key vector requirements are a major issue that we consider (and that most researchers ignore). For exact
solutions, standard correlation matrix AAPs require orthonormal keys and pseudoinverse/MSE (minimum squared
error) APs require linearly independent keys. Both assumptions are unrealistic. We consider linearly dependent
keys (in our Ho-Kashyap (HK) APs [5,6]).

In this paper, we consider only linear decision surfaces. Our minimum-cost APs (MC APs) allow nonlinear
decision surfaces. These are essential for all APs (especially for PR cases where class separation is the important
issue).

We now advance several new classifications of APs and discuss each briefly.

2.2 PR HAPs - Small Problems

For pattern recognition (PR), heteroassociative processors (IIAPs) are used. Their outputs denote the class
of the input object. The input key vectors should be analog (feature space) and the output recollection vectors
should be unit or binary-encoded vectors. For small problems, unit vectors are preferable (if WTA detection is
used) but binary vectors are adequate (they require a fixed detection threshold T). Binary encoding results in a
smaller AP matrix than do unit vectors (both are very similar in size for small problems with small K). With small
K, WTA postprocessing is acceptable (and trivial). For 1:1 APs as in Section 2.4 (each key vector is associated
with a separate recollection vector), we have shown that unit vectors are preferable [7]. Small problems refer
to the size K of the recollection vector (the number of classes) and to the types of distortions required (full 3-D
distortions require very large M).
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2.3 PR IIAPs - Large Distortion Problems

When a wide range of 3-D object distortions must be handled for a C = 3 class problem, we find

(Section 4.3) that neither binary nor unit vector encoding is acceptable and that hvperplane-selected rec-

ollection vector encoding (a minimum cost, MC, All) is required. In the PR cases in Sections 4.2 and 4.3,

many key vectors (distortions in one class) are assigned to the same recollection vector.

For all distortion-invariant PR problems (small and large), we test these APs using noisy training images

and using intermediate distorted images (at intermediate distortions between training images, i.e. with data not

present in the training set).

2.4 PR HAP - Large Class (1:1 General HAP)

In large class problems (C large) when limited distortions (e.g. in plane) are required, such that only one feature

vector per class is required, then each key vector (one per class) is assigned to a different recollection vector. We

refer to this as a 1:1 General AP. Since generating data for this case is generally prohibitive, we use analog keys

uniformly distributed [0,1] or [-1,+1] and random (binary encoded) recollection vectors with elements ±1 or 0,1.

We test these HAPs with noise present in the input keys. Modifications in which several keys map to the same

recollection vector are possible. Section 4.6 includes tests of various recollection vector encodings besides binary.

2.5 Autoassociative Processors (AAPs)

This class of AP has been the most widely analyzed. They require Y = X and are useful for producing full
outputs (y) from partial/noisy inputs (x). For binary cases, x and y are uniformly distributed binary [0,1 and

for analog cases x and y are uniformly distributed analog [0,1]. They are tested with input noise and partial

inputs. We do not consider such APs and do not find a use for AAPs (as we now discuss). For image processing,

analog x and y are used. But the reason for image processing is PR and thus we use a HAP and can test it on
noisy/partial inputs. A cascade of an AAP and HAP does not appear to be better than an HAP alone (a nonlinear

(NL) function is not easily provided in an analog AAP and thus the linear AAP function can be included in the

HAP). Of more concern is the large size required for any AAP (with image pixels) which makes it prohibitive and

correlation or morphological processing [8] preferable especially if all image distortions are required to be included

in the AAP (here M is excessive when iconic (pixel-based) input Pi neurons are used). Similar remarks apply to
binary AAPs for image processing (with the additional note that most imagery, except text, is not binary, but with
font and point size variations M is again excessive). An extra NL function is possible with binary P data and
the cascade of such an AAP/HAP may be preferable (but the AAP size and its M appear excessive). For general
binary storage our label/standard memory AP [6] is preferable (Section 2.6). For general data, the conventional
digital encoding does not allow for use of the large error correction possible with APs (vs. standard digital error
correction techniques) since all digit combinations of data are possible. For knowledge bases, our label/standard
memory appears preferable (Section 2.6). For these reasons, we find no advantages and uses for AAPs.

2.6 Label/Standard Memory AP

Figure 2 shows this AlP concept in which a HAP outputs a label that denotes the location in a standard
addressable memory of the associated input data. A standard memory cannot tolerate errors while the HAP

input processor can. We consider this AP with analog uniformly distributed [-1,1] or [0,1] keys and random
(binary) (±1) recollection elements as in Section 2.4. This is useful for knowledge bases, attributes (with 1:1

modifications) etc. and possibly in speech and spelling checker AP cases. The standard memory outputs can
be feature/attribute/association lists, etc. associated with the input object. The standard memory data can be
stored analog or digitally.
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2.7 Multiple APs

Many problems will require use of multiple APs and a cluster [9] etc. front end. Our present concern is the
individual APs.

2.8 Performance Measures

The performance measures we use differ vary significantly from most prior ones (for reasons indicated). The
three major performance measures we use follow.

2.8.1 Storage Density

The number of key/recollection pairs M stored is the major concern. M must be large but the memory size KN
required is also of concern. Thus a storage density M/KN with large M is the key parameter. Many researchers
consider only M and employ higher-order etc. APs or neural nets (NNs) to increase M with an associated increase
in KN (thus achieving no improvement in storage density). The majority of prior APs store M < N and are thus
not competitive. Our 1:1 General APs store M > N (M = 2N is the theoretical maximum). Our PR APs store
M> N.

2.8.2 Radius of Attraction

Various measures such as a./1a (output-to-input noise variance) are not suitable for HAPs [7]. Similarly,
Hamming distance (and the related standard radius of attraction) is useful only for binary keys. With analog
keys, we use Euclidean distance as radius of attraction (this is the largest distance that an input can be from a
key vector and still be reliably identified as that key). We use this measure only for our 1:1 General HAP (where
noise ai sets the variations and where each key is a separate point in feature space). See Section 2.8.3. Our radius
of attraction thus relates to ai. It is specified for a given P, (see Section 2.8.3).

2.8.3 Recall Accuracy

In complex PR cases (with many 3-D distortions per object) the probability distributions per class vary widely
and are not spheres. Thus, radius of attraction is not meaningful nor is it defined. The probability distributions
determine the performance expected and the recollection vector encoding used. Thus, for all APs, we use recall
accuracy as our major performance measure. Few researchers use this and when it is used, they use P. (the percent
of recollection vector elements correctly recalled). This is useful only for AAPs but is useless for HAPs. We use
P,' (the percent of all recollection vectors with perfect recall) which is more meaningful (and less than P,)-

3 AP Review

We now highlight the various APs we consider. This review concerns the synthesis algorithms used to calculate
the AP matrix M, key vector requirements, noise and analog accuracy considerations. Hopfield [10,11] and
Direct Storage Nearest Neighbor (DSNN) [12] APs are detailed elsewhere. AAP and ItAP storage capacity [7],
Pseudoinverse APs, and flo-Kashyap (ILK) PR APs [5] and 11K 1:1 General HAPs [6] are detailed elsewhere.
BAMs are not considered as they have the limited M < N storage of the Hopfield memory [5]. All APs solve
Mxm = y, for M for all (xm,ym) pairs. The minimum squared error (MSE) solution is M = YX + (where the
columns of the matrices X and Y are the xm, and y,, and X+ = (XTX)-IXT is the pseudoinverse).
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The correlation HAP uses M = YXT which is not realistic as XT = X+ only if the keys are orthogonal. We
include it as it is one of the most used APs although its capacity and performance (it is not a nearest neighbor
AI') are not attractive.

The DSNN IIAP uses M = XT and is the only nearest-neighbor IIAP. It has the best performance of any HAP,
but its disadvantage is its large size and it requires a WTA (which is not realistic for the large K it needs).

The standard pseudoinverse AP uses M = YX+ . This minimizes the error JI =11 Y - MX 112 with respect
to M and has useful performance with much larger storage (M ; N) than the correlation HAP. However, the Y
solutions are only exact for linearly independent keys (which is not realistic). The MSE pseudoinverse AP is the
same and is used when M > N. Here the keys are linearly dependent and the solution is the MSE one. This still
allows useful solutions when M < N and when M > N (and hence much larger storage) but it has poor noise
performance when M .z N. We have used two robust solutions for improved performance when noise is present.
The Robust-I Pseudoinverse HAP (we refer to this as a Pseudoinverse-1 AP) uses M = Yi+ where X has small
singular values with p < x/-ai set to zero. This improves noise performance for all MIN and especially for
M ;: N. It thus allows useful solutions in noise for all M including M > N. The Robust-2 Pseudoinverse HAP
(we refer to this as a Pseudoinverse-2 AP) yields the optimal solution when input noise (uncorrelated) is present
with a standard deviation a. The solution is M = yXT(XXT + Ma 2 I)- 1, where the noise correlation matrix a2I

is included. This minimizes J2 =11 Y - M(X + N) 112 with respect to M. This provides better storage capacity
and the optimum input noise performance.

All prior APs do not work well with linearly dependent keys (hence they are typically limited to M < N for
high recall accuracy). The HK AP [5] allows excellent performance and storage (M > N) with linearly dependent
keys. For general keys (our 1:1 General HAP), it stores M = 2N (the maximum for any 1:1 General HAP)
[13]. The HK AP algorithm minimizes J, =11 Y - MX 112 with respect to both M and Y. It thus changes
the Y elements to optimize J1 . This is done only in synthesis. In recall, the same binary recollections are used
(after thresholding). The five algorithm steps are shown in Table 1. The algorithm starts (Step 1) with the MSE
pseudoinverse solution and refines (improves) it (producing a better MSE for the case of linearly dependent keys).
The error matrix E, in Step 2 is the error in the ym (the y.. obtained are not exact since the solution is the MSE
one). The modified error matrix E' (Step 3) equals En except that all En elements that differ in sign from the
corresponding elements in Y, are set to zero (the S matrix contains the signs of the desired outputs in Y and 0
denotes Hadamard multiplication). The initial Ym choices are then modified (Step 4) and the algorithm iterates
until E' = 0. Convergence has been proven [5] for linearly separable data (where E, = 0) and for linearly
nonseparable data (where E, = 0). This HK AP algorithm offers a solution for M > N that is better than the
MSE pseudoinverse solution (for linearly dependent keys).

Step Operation
I M" = Y.X+
2 En = M.X- Y"
3 E' = -(E. + S® IE.I)
4 Yn+1  = Yn +2pE', O<p<l
5 IfE', 0goto 1.

Table 1: Ilo-Kashyap AP Algorithm

We have developed two robust (good input noise performance) versions of the standard HK algorithm. The
robust-I IK HAP starts (Step 1) with X+ (the pseudoinverse ofX). The robust-2 HK AP starts with the robust-2
pseudoinverse solution for X + in Step 1. The final modification that we have deve'oped is the error-correcting IlK
AP [5). In this case we update Y using Y,,+l = Y, + E' and we update M using M,,+, = M, +p(S ® IE,,)XT.
This allows calculation of M on a low accuracy (optical) processor and produces an M that should have low
accuracy requirements.
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With a better MSE, one cannot show that P, or P,' will be better, but we have observed this to occur (when
noise is present). We note that the robust algorithms can give slightly lower performance with no noise, but that
they give better performance in noise.

4 Pattern Recognition HAP Test Results

We now present various PR HAP test results.

4.1 Feature Space Neurons (In-Plane DI)

To reduce neuron dimensionality (N) and storage (M), we use feature space key neuron representations. The
feature space we consider in this paper is a wedge-ring detector (WRD) sampled IFT12 (Fourier transform = FT)
space [14] (see Figure 3). These neurons are shift invariant (SI) (since the IFTI2 is), the wedge neurons are also
scale invariant and the ring neurons are also rotation invariant (RI). SI is essential to avoid the need to include all
shifted objects in the training set M. For RI, we use the ring samples and only one training image per class. For
scale invariance, we use the wedge samples and only one training image per class. For complete in-plane invariance,
we use adjunct techniques (moments or a priori information) to locate the nose of an aircraft or the orientation
of an object and thus employ only wedge IFT12 samples. Figure 4 shows test results of a N = 32 element key (32
wedge samples), K x N = 18 x 32 matrix, K = 18 element recollection vector HAP in which outputs in elements 1-9
denote Phantom jets and outputs in elements 10-18 denote DC-10 aircraft (the output neuron element activated
gives the object's rotation). The system was trained on 9 images per class (200 rotations), covering 1800 (by
symmetry the other 1800 images have the same feature space). The outputs are shift and scale invariant and AP
synthesis requires two training images (one per class) since the 9 rotations of each object (at 200 intervals) are
simply cyclic shifts of the 1-D wedge IFTI2 inputs at 00.

4.2 3-D DI Test Sets 1-3

We now consider three test cases involving three classes of aircraft and various amounts of pitch and roll
distortions. Figure 5 shows several of the distorted images per class with the top-down 0* pitch and 00 roll view in
the center top and with pitch increasing to the left (at -40' and -800) and right (+400 and +800) and with roll
increasing down (400 and 800) from the central images. In these data, a 33 element key vector was used with one
element being a constant 1 (this allows the threshold to be adjusted, i.e. the associated hyperplane to be shifted)
and with 32 wedge IFT12 samples. Thus N = 33. The inputs are 128 x 128 and are not edge enhanced. The pixels
in the center of the FT within a radius of 20 are set to 0 (to enhance higher frequencies). We use recollection
vectors with K = 2 (Test Cases I and 2) and K = 3 (Test Case 3). The HAP matrices are thus 2 x 33 or 3 x 33.
We use unit recollection vectors and WTA maximum selection (a "1" output in element 1 indicates a Phantom, a
"1" output in element 2 indicates a DC-10 and a "1' output in element 3 (Test Case 3) indicates an F104). The
three test cases involve different numbers of classes and different amounts of pitch and roll distortions: Test Case
1 (±500 of pitch and roll, two classes), Test Case 2 (±600 of pitch and roll, two classes) and Test Case 3 (-k80* of
pitch and roll, and all three classes). Table 2 summarizes these three test cases. The training set size M = NT
used to synthesize each HAP is noted (we use 441, 625, and 1089 images per class). These are all images in the
pitch and roll range noted at 50 intervals. The test set size used is also noted (400, 576, and 1024 images per
class). These are images at 2.5* rotation intervals between the training set image views. Representative wedge
IFTI2 data are shown in Figure 6.

In all tests, the sum of the squares of the wedge data was normalized to I (after removing the low frequency
20-pixel radius). When noise was added to the wedge data, the standard deviation was ai = 0.1, negative valued
pixels were set to zero, and the noisy wedge data (after removing pixels in the low frequency radius of 20) was
renormalized. The new noise had Oi = 0.078. Normalization is done in this way to provide invariant features
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Figure 4: In-plane distortion-invariant wedge jFT~ 12IAP (N =32 wedges, K = 18 element recollection)
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(a) Phantom images

(b) DO-10 images

(c) F104 imnages

Figure 5: Rtepresentative roll (vertical 0'~, 40', 800) anl pitchi (hiorizontal, 0', ±400, ±80(') 3-D distorted im-ages of

tlire aircraft
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'rest Set Aircraft Pitch and Roll Al = NT (Train Set) Test Set
Distortions (50 increments) (2.50 intermediate)

1 Phantom, DC-10 ±500 2 x 441 882 2 x 400 800
2 Phantom, DC-10 ±600 2 x 625 = 1250 2 x 576 1152
3 Phantom, DC-10, F104 ±800 3 x 1089 3267 3 x 1024 -3072

Table 2: Three test sets for 3-D DI

(with object scale changes, etc.). The ai = 0.078 used corresponds to an SNR = 5 or 7.1 dB, where SNR =

10log(Average wedge energy/ac) = 10log[(1/32)/0.0781.

4.3 Initial Test Results (3-D Distortions)

Table 3 shows the results obtained. The correlation matrix performs worst as it requires orthogonal keys for
X -

= -- X T and an exact solution. This is the AP used in most HAP work. For this 3-D DI PR problem (many:1),
the correlation AP performance is quite good (although its P, is 25% larger than for advanced APs). This occurs
because the correlation AP uses one LDF per class that is proportional to the average of the training set for one
class and this performs well here (simply because the density distributions of the various distorted objects are
approximately spherical and thus the VIP with the average vectors is correct (nearest neighbor) with WTA used).
In our 1:1 general AP application, the correlation AP performance will be much worse than for our advanced APs.
The DSNN is expected to perform best and it does, but its size is excessive since all training vectors are separate
columns of the M = XT matrix. The size of all HAPs is 2 x 33 or 3 x 33 except for the DSNN. The size of the
DSNN (where M = XT) is 882 x 33, 1250 x 33 or 3267 x 33 (which are all excessive, and a WTA is needed).

We first consider the training and test set results from the Test Set-i data with no noise. The pseudoinverse
HAP yields 97.7% and 99% recall, but the HK gives perfect (100%) results on both the training and test sets.
Only 14 HK iterations were required (these are off-line in synthesis and in real time only one pass is used). All
results are excellent with test set results agreeing with those from the training set. The pseudoinverse is not exact
and the HK improves it (with 14 iterations). The robust algorithms (Tests 4 and 5) are expected to provide less
recall on non-noisy data. The data shows this as performance drops (98.1% and 99.5%) while the pseudoinverse-2
improves slightly to the same values. We expect the robust algorithms to be better in noise than in no noise. We
see (or,, = 0.1 data in Tests 4 and 5) better performance. The robust algorithm improves the noise performance
of the pseudoinverse HAP from 93.1 to 94.3 (Tests 2 and 4) and of the HK AP from 93.2 to 95.1 (Tests 3 and
5) and the HK-2 HAP yields the best noise performance. Note that the improvements in the recall P' given are
small but the percent error change is large (e.g. P, in noise improves from 7.7% to 4.6% (tests 3 and 5) which is
a 40% improvement).

The Test Set 2 results are similar with a lower P,' indicative of a more difficult problem. The same general
trends result. Here, the pseudoinverse (standard and robust) performs better than HlK on the noisy test set. This
may due to the fact that in this difficult PR problem, the distribution of the data determines performance moreso
than the reduced MSE that HK gives (there is a larger drop in P/ with noise here than in Test Set 1). The robust
algorithms perform better than the standard ones in noise and the robust ilK (HK-2) is best or close to best. The
Test Set 3 results show P, too low to generally be of interest - tiius no noise tests were performed on it and the
robust algorithns were not attempted. For Test Sets 2 and 3, the data given is for 500 training iterations of the
If K algorithm. The algorithm was terminated here. Comparable results occui after about 100 iterations.

Our advanced IIAPs achieve excellent IIK-2 results (P, = 4.6-4.9% in Test Set 1 and P, = 8.8-9.4% for Test
Set 2) in high ((7,, = 0.1) noise with a very small 2 x 33 = 66 element memory. The memory size is much less than
for the I)SNN (882 x 33 = 29, 106 and 1250 x 33 = 41,250 elements) and performance is much better than for
the correjation IHA 1) (I = 5.2-7.0% and 11.8-12.2% for Test Sets I and 2). These new memories stored M = 882
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Figure 6: Representative wedge IFTI2 input neuron HAP data of aircraft at 0*

Test HAP Test Set 1 Test Set 2 Test Set 3
Training Set Test Set Training Set Test Set Train Test
a -- - " 0 - = " 0 =a ==

0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0
1 Correl 96.8 93.0 97.3 94.8 92.0 87.8 93.1 88.2 75.3 77.0
2 Pseudo 97.7 93.1 99.0 92.6 96.3 87.3 97.2 88.5 78.9 80.0
3 IlK 100 93.2 100 92.3 99.4 82.3 99.3 85.5 80.7 81.2
4 Pseudo-2 98.1 94.3 99.5 95.0 95.7 90.2 96.4 91.7 - -

5 IIK-2 98.1 95.1 99.5 95.4 95.5 90.6 96.3 91.2 - -

6 DSNN 100 99.5 100 99.3 100 97.9 100 98.4 100 98.8

Table 3: 3-1) DI IPR flAP Test Results (Pt)
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IIAP No. Bits Train 'est Train Test
No Noise ar = 0.1 a, = 0.1

00 99.4 99.3 82.3 85.5
IlK 12 99.2 99.3 82.3 85.5
Assoc 10 99.4 99.3 82.3 85.5
Proc 8 99.3 99.3 82.4 85.6

6 98.9 98.7 83.0 84.9
4 93.3 93.8 75.5 76.8
2 54.2 52.3 52.3 53.5
00 95.5 96.3 90.6 91.2

HK-2 12 95.5 96.3 90.6 91.1
Assoc 10 95.5 96.3 9C.6 91.2
Proc 8 95.8 96.3 90.6 91.5

6 95.8 96.3 91.5 91.9
4 95.1 96.0 89.6 91.0
2 86.6 87.3 78.6 78.8

Table 4: Quantization tests for typical HK APs (Test Set 2)

and M = 1250 training vectors with N = 33 (Al = 27N and M = 38N), which is much larger than for any prior

HAP. They have been extensively tested on 800 and 1152 test images and with noise.

4.4 Quantization Tests (3-D Distortions)

The additive input noise tests (Table 3) are indicative of the low number of quantization levels required in the

input data. We now quantized the input, matrix and output to the same number of levels. Output recollection
vector quantization can cause errors with the WTA postprocessing performed. We found that all APs could be

quantized down to 6 levels with negligible loss in Pc. For some cases, quantization to 4 levels also gave an equally

small drop in P. For the Test Set 1 data, the pseudoinverse (Test 2) and HK (Test 3) APs could be quantized

to 6 bits with no loss in P for the no noise case and to 8 bits for the o,, = 0.1 noise case. The HK AP (Test

3) could be quantized to similar levels. The robust APs (Tests 4 and 5) were slightly better allowing 4-6 bits of

quantization with no loss. Table 4 shows specific data for the HK and HK-2 APs for Test Set 2 data. They show
that 6 bits of data suffice.

4.5 1:1 General HAP (Large-class PR Tests)

For large-class problems with one feature vector sufficient per class (e.g. for in-plane distortions), we consider
our 1:1 General HAP (Section 2.4) with each key vector associated with a separate recollection vector (hence we

use the term 1:1 HAP) using analog [-1,1] uniformly distributed key vector elements and random (±1) binary keys

(hence we use the term General IIAP).

4.5.1 Performance for M N in Noise

\Ve consider an IIAP with N = K = 50 (a 50 x 50 = 2500 element matrix). We increase Al (the number of

stored key/recollection vector pairs) and added noise with a = 0.00, 0.05, 0.10 and 0.20 (SNR = x, 21, 15, and

9 dB). The pseudoinverse and IlK both showed a drop in performance P, around I ;! N (as expected) when

noise is present (Figure 7). The noise-free IlK gave P, > 99.9% for M = 1 .52N (th standard pseudoinvcrse only
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Figure 7: Pseudoinverse 1:1 General HAP results Figure 8: HK-2 1:1 General HAP results
(N = K = 50, on = 0.0,0.05,0.10,0.20) (N = K = 50, a. = 0.0, 0.05,0.10,0.20)

allowed M = 1.04N). We showed earlier [13] that the HK has a maximum storage (general case) of M = 2N.
This storage of M = 80 key/recollection vector pairs with Pc _ 99.9% in a 50 x 50 HAP matrix is much better
than what standard correlation HAPs provide (M ;t 2). Figure 7 shows the pseudoinverse HAP results. Figure 8
shows the HK-2 robust results. We see no drop in performance near M = N and excellent results, e.g. PC > 90%
for M = 1.6N with a,, = 0.1 (storage of 80 key/recollection 50-element vector pairs in a 50 x 50 = 2500 element
matrix) and P, > 99% for M = 0.6N with a,, = 0.2 (25 vector pairs (50 element vectors) in a 2500 element
matrix).

4.5.2 Comparison of Different HAP Algorithms

Table 5 compares the performance of different HAPs with K = 7 binary (±1) encoding. With K = 7, we
allow 27 = 128 key vector pairs and satisfy M > 2N = 100 (the maximum theoretical value). We increased M
and calculated the maximum M for which P' > 95% for different amounts of noise a,. We show MIN with each
entry being the average of ten noise runs with the same a-,,. All HAPs are the same size (7 x 50) except the
DSNN (it is M x 50). We include the DSNN for comparison. Its M is largest but its size is also much larger
(for MIN = 1, the DSNN is seven times the size of the other HAPs). The correlation HAP performs worst as
expected. In this 1:1 (Table 5) vs. many:1 (Table 3) case, the correlation HAP storage is much worse. If we
had used N = K = 50, we would expect M = N/(41og 2 N) = 2 for random binary recollections. Thus, we see
that binary encoding improves performance (M ; 0.3N = 15). We find that HK is better than the pseudoinverse
(both give poor noise performance for M ,- N and hence low MIN). The robust algorithms improve performance
(IIK-2 is better than HK and the Pseudoinverse-2 is better than the Pseudoinverse) in noise.

We used a = 0.1 in the synthesis of all robust algorithms. We note a drop in P" for a > 0.1 with HK-2 giving
the best performance for a < 0.1. These Tables 5 and 6 data use a new matrix (different M) for each a and
algorithm (column) test with each entry being the average of ten runs (same a,,). These entries are obtained from
curves as in Figures 7 and 8 and tabulated as shown. IIK-2 has Al/N always equal or better than that for the
Pseudoinverse-2. It appears that the ItK-2 algorithm is only better for low a. To address this, we formed both
robust IIAPs with a = 0.2. Table 7 shows our test results. As seen, 1IK-2 is better and never worst but it is only
appreciably better for a,, less than the a value used in the synthesis l.gorithmi.
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an DSNN Corrclation Standard Standard Robust-2 Robust-2

__ Pseudoinverse IlK Pseudoinverse IlK
0.00 > 20 0.36 1.20 > 1.60 1.12 > 1.60
0.05 > 20 0.32 0.92 0.92 1.08 1.32
0.10 -> 20 0.24 0.80 0.84 0.92 0 92

0.20 1 > 20 0.20 < 0.60 < 0.60 < 0.60 <0.60

Table 5: Different 1:1 General HAPs with N = 50 element analog uniformly distributed [-1,1] keys and binary
encoded recollection vectors (except for DSNN). The maximum M/N for P, = 95% performance in noise (', =

0.00,0.05,0.10, and 0.20) is given.

4.6 1:1 General Large-Class PR HAP (Recollection Vector Choices)

We now consider how different recollection vector choices affect the performance of the best 1:1 General PR
HAP (HK-2 with a = 0.1) with N = 50 element analog uniformly distributed keys and with four different output
recollection vector encoding choices and different noise o for three different P,. As before, we increased M until
P,, (note we use Pc' not Pc) decreased below P,' = 90%, 95% and 99%. Table 6 lists the results (the maximum
MIN) for various cases. The four output recollection vector encodings used were: binary (we used a fixed K = 7
bits, since 27 = 128 and M = 2N = 100 is the maximum HK capacity), Hamming (we used a K = 11 bit word, 7
bits of data and 4 error correction bits to correct one data bit error, with a matrix-vector product postprocessing
step), BCH coding (K = 15 bits, 7 data bits; this corrects 2 data bit errors and requires iterative matrix-vector
postprocessing to achieve this) and L-max coding (with L = 2 ones in a K = 14 bit output and L = 3 ones in a
K = 9 digit output). We find L-max coding (L = !, K = 14 bits) to be preferable. Since the HAP size is small
here (7 x 50 for binary and 14 x 50 for L-max) we allow a doubling of matrix size to obtain the increased storage
(M = 0.92N for binary vs. M = 1.4N for L-max for P' = 95%). Doubling K (7 in binary to 14 in. L-max) gives
a 50% to 100% improvement in MIN. We note that increasing K for binary encoding will not increase M.

We do not use Hamming or BCH since they require added matrix-vector postprocessing. Comparing the
Hamming and BCH data to the binary results, we see the improvement this matrix-vector error correction post-
processing provides. We note that L-max encoding also requires postprocessing (finding the L largest outputs).
This can be done by running WTA L times or more easily by modifying the WTA algorithm (using a ramp thresh-
old). Thus, the WTA postprocessing is much easier than others (Hamming postprocessing is also quite easy, but
this corrects only one error bit). As the required P, increases, M/N for the error correcting encodings drop while
L-max encoding maintains performance (since error correcting can only correct one and two bit errors). Earlier,
we noted that unit vector encoding with WTA is better than binary. Here, modified WTA (L-max) is also better.
This is necessary in 1:1 cases to compete with the DSNN.

From the P,' = 95% data, we note no appreciable drop in Pc up to a = 0.1 (the value used in synthesis). As
noise increases, we note that M/N for binary encoding decreases the most.

Acknowledgements

'ie support of this work by a grant from AFOSR is gratefully acknowledged.

31



P" aRecollection Vector Encoding (7 Data Bits)
(%) Binary Hamming BCIH L-max (L ones)

(K =7) (K= 11) (K = 15) K= 14(L=2) K =9(L=3)
0.00 > 1.60 1.56 > 1.60 > 1.60 > 1.60

90 0.05 > 1.60 1.52 > 1.60 > 1.60 > 1.60
0.10 0.96 1.52 1.48 > 1.60 1.44
0.20 0.68 0.84 0.92 1.12 0.80
0.00 > 1.60 1.48 1.56 > 1.60 > 1.60

95 0.05 1.32 1.36 1.52 > 1.60 1.44
0.10 0.92 1.12 1.40 1.40 1.16
0.20 < 0.60 0.72 0.80 0.96 0.72
0.00 1.56 1.32 1.44 1.48 1.36

99 0.05 0.88 1.20 1.32 1.40 1.20
0.10 0.76 0.92 1.08 1.20 0.88
0.20 < 0.60 0.60 0.64 0.72 < 0.60

Table 6: Different recollection vector encodings for our 1:1 General Robust-2 HK HAP with o = 0.1 and N = 50
element analog uniformly distributed [-1,1] keys. The maximum MIN for P, = 90%,95%,99% performance in
noise (a, = 0.00, 0.05,0.10, and 0.20) is given.

P" a,, HK-2 Pseudoinv-2 P" Oa, HK-2 Pseudoinv-2
0.00 > 1.60 1.20 0.00 1.36 1.04

90% 0.05 1.48 1.08 95% 0.05 1.20 1.00
0.10 1.08 0.96 0.10 0.88 0.88
0.20 0.72 0.72 0.20 0.64 0.60

'Fable 7: IK-2 and Pseudoinversc-2 Performanct with a = 0.2 in Synthesis
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Abstract
A new synthesis algorithm is presented for generating a neural associative processor with piecewise-

hyperspherical decision boundaries. Two important characteristics of the algorithm are that it represents each
class with a near-minimum number of hyperspheres and has proven convergence properties. Classification
results are presented for a three-class 3-D distortion-invariant aircraft case study (invariant to changes in
position, scale, and in-plane and out-of-plane rotation).

1 Introduction
Associative processors (APs) are attractive for pattern recognition (PR) because they associate noisy and

distorted versions of an input key vector with the same class label, or output recollection vector. However,
simply assigning prechosen recollections can yield poor recall accuracy. Therefore, we have extended the
Ho-Kashyap (HK) [1] AP algorithm [2] to compute recollection vectors that represent arbitrarily complex
class boundaries with multiple hyperspheres. Section 2 reviews existing piecewise-hyperspherical classifiers
and advances our new minimum-cost HK AP. Section 3 presents classification results for a simple two-class
synthetic PR problem with a 2-D feature space. Classification results from our new AP and other classifiers
are given in Section 4 for the three-class 3-D distortion-invariant (DI) aircraft case study.

2 Piecewise-Hyperspherical Classification
Others [3,4] have developed piecewise-hyperspherical classifiers, but they do not necessarily find a near-

minimunm number of hyperspheres or are not guaranteed to converge [3] as ours is.

2.1 General Approach
Denoting the M keys and recollections as the vectors x. (N-dimensional) and y.. (K-dimensional), the

vectors xm and ym form an associated key/recollection pair . The recollections are bipolar binary class
labels which the synthesis algorithm determines. We desire a K x N matrix M satisfying y,,, = sgn(Mxm)
for m = 1,..., M, where sgn is the signum function. Defining matrices X (N x M) and Y (K x M) with
the key and recollection vectors as their columns, we must satisfy sgn(MX) = Y. We synthesize each row
mT, k = 1, ... , K, of the memory matrix sequentially so that the mT satisfy

f mT ]bT

sgn X, (1)

where the bT are the rows of the bipolar binary recollection matrix Y, i.e., the desired outputs for the mT.
To define hyperspherical boundaries, we augment each key in the original N'-dimensional feature space with
one element that is 1 and one element that is the sum of the squared original N' key elements [5]. This
creates new keys of dimension N = N' + 2. The muT define hyperplanes in the new N-D (N-dimensional)
space. However, these hyperplanes are hyperspheres in the original N'-D space.

To calculate raT in (1), we treat one class as the true class and all others as the false class. The elements
of the desired output bT are specified to be +1 for true class keys and - for false class keys. We scl- fX an
'at that produces a +1 output for many true class keys and a -1 output for all or almost all false class keys.

'now at the Naval Surfacre Warfare Center, Silver Spring MD. suppr..d by an ONR Young Navy Scientist Award.
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I IIfTj '  110-0 -01 0.01-0.02 0.02-0.0.5 I0.05-Qi 0.1-0.2 1 0.2-0.5
c Ll 1 1.5 2 2.5 3 1 3.5

Table 1: Guidelines for false class costs c for different MT/MF (the ratio of the remaining true class keys to
the false clas kvs).

Our primary concern is that no (or very few) false class keys have +1 outputs. The hypersphere defined by
mT thus correctly classifies some number of the true class keys and separates them from almost all of the
false class keys. We then remove the correctly classified true class keys from X (and the associated elements
from bT) and calculate an mT that correctly classifies (+1 output) some of the remaining true class keys
and rejects (-1 output) almost all false class keys. This procedure continues. W%,hen all mT that classify
this class and reject all others have been calculated, we select a second class as the true class and assign
all others to the false class, etc. and we continue calculating mT rows until hyperspheres to separate each
class from all others have been determined. Our approach avoids overtraining (because hyperspheres that
separate only a few true class keys from the false class keys need not be used), uses few hyperspheres and
reasonable computer time.

The recall operation is y = sgn(MNx). The k-th output element y' indicates whether the input x falls on
the positive or negative side of the k-th hypersphere. If the input falls on the positive side of any hypersphere
from a class, and falls on the negative side of all hyperspheres from other classes, then the input is classified
as that class. If the input falls on the positive side of hvperspheres from more than one class, then the input
is rejected (i.e. no uecision is made). The input is also rejected if the input falls on the negative side of all
hyperspheres. The reject capability is important. It is not always needed, since the input can be classified
according to the maximum output element.

2.2 Minimum-Cost HK Algorithm
We find the mk in (1) by minimizing the criterion function J = (XTmk - bk) T C(X Tmk - ba), where C

is a diagonal cost matrix containing positive weights. Depending on k, X may not contain the entire set of
true class keys, i.e. when calculating subsequent mn for one class, only keys not classified by a previously
computed mk are included as noted in Section 2.1. The term (XT m - bL) is a vector of errors between
the actual XTm and desired b outputs. The criterion function J is the sum of the squared errors with each
error weighted by an element in C. When C = I, M is our standard HK AP [2]. We use C to heavily weight
the errors for the false class keys to ensure that few or none are misclassified. This gives low error rates,
good recall accuracy, and a small number of m.

We first discuss how to select the proper costs. This requires a few iterations. Ve fix the cost for true
class errors at 1 and vary the false class cost during the cost iterations. In our aircraft case study (Section
4), we define a satisfactory cost to be a value that results in a hypersphere with a number of false class
errors less than 5% of the number of correct true class keys. The 5% figure can be varied (allowing higher
percentages will decrease the number of hyperspheres, but will decrease the recall accuracy; requiring a lower
percentage will increase recall accuracy, but will increase the number of hyperspheres). In our 2-D two-class
example (Section 3), we use 0% instead of 5%, for demonstration purposes only (0% is unrealistic for the
complex PR problems for which our minimum-cost APs are intended).

We now consider choosing the initial and subsequent false class costs. The false class cost used should
decrease as true class keys are removed from X when finding a sequence of hyperspheres, since the sum of
squared errors is increasingly dominated by false class errors. From our aircraft case study (Section 4), we
have devised guidelines (Table 1) for the choice of initial false class costs as a function of AIfT/MA (the ratio
of the remaining true class keys to the false class keys). If the initial cost is too low (i.e. if it produces too
man-y false class errors), we multiply the cost by 3/2. If the initial cost is too high (i.e. if there are almost
no false class errors but many true class errors), we multiply the cost by 2/3. If upper and low limits
for the cost exist (from two or more cost iterations), then we choose a new cost that is midway between
the upper and lower limits. Using these rules on our aircraft database, each hvpersphere only requires 1.8
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cost i:'-ratv-ns to det,-rnin a satisfactory li. We expect these ruls to apply to other pattern recognition
prot,>,-s, a.though more co-t iterations may be required These rules are riot cri'ical to the minimum-cost
Al' svnthi.: algorithm. i.e. the rules could be changed and we would still find satisfactory costs- The critical
part of the minimum-cost AP synthesis is the minimum-cost algorithm itself, which we now discuss. It has
a strong ar aiti',:al basis and proven convergence properties.

%%e now derive our minimum-cost AP. Setting the gradient of J with respect to Ink equal to zero and
solving for mj gives the new minimum-cost pseudoinverse AP solution to m7"X = bT in (1) as m. = X+Tbk
where XMC = CXT(XCXT)- is the minimum-cost pseudoinverse. The idea behind the HK algorithm is
to refine the pseudoinverse AP by iteratively changing the b elements, but not their signs, in order to reduce
J and thereby reduce the classification error. The gradient descent algorithm for the minimum-cost ilK AP
is obtained by taking the gradient of J with respect to ml: and bk. Eq. (2) gives the algorithm. In (2), we
omit the k subscripts on m and b for simplicity and use subscripts (i) to denote the iteration number. The
algorithm operates in the same manner as the basic HK algorithm, except that it uses a new method for
forming the modified error e' and it incorporates the cost matrix. We now discuss this algorithm.

We begin with an estimate of m (step 1). We modify b (step 4) and m (step 1) in successive iterations
(index i). In step 2, we calculate the error vector e. In step 3, we form a modified error vector e' with
elements e'" (we use c = 0.1). In Step 4, we add e' to b to alter the recollection elements b" of b. The e'
vector equals e except that any e' elements that would cause the desired outputs b to change sign (or to
come within f of changing sign) are set to zero. The e' vector differs from the one used in the standard HK
algorithm in the use of f and in how the bm elements are altered. The standard HK algorithm only allows
the b' magnitudes to increase, while our method in Step 3 allows the b' elements to increase or decrease.
This minimizes J faster than the standard rnethod, and therefore requires 20% fewer HK synthesis iterations
i in the Section 4 case study.

Step Operatiou
1 mi -X MC~

2 ei =C(XTmi bi)

if b >0, e" maf(c -)= C b )IC /2),e
else ei =rnin{-(c + , }(2)

4 bi +I =bi +pC ei,

5 If eC' 9 0 go to 1.

We have proved that the algorithm converges when 0 < p < min(2,2/c), with p = min(2,2/c) giving the
fastest convergence. If the two classes are linearly separable in N dimensions (or equivalently, hyperspheri-
cally separable in N' = N-2 dimensions), the algorithm will find an LDF that separates them. If the classes
are not linearly separable (as will usually be the case), then the algorithm will find an LDF that minimizes
J. The proof is an important result, because it provides a mathematical basis for the algorithm. In practice,
we stop the HlK algorithm when all keys are correctly classified or when the number of misclassified keys is
unchanged after 50 iterations.

After computing one or several hyperspheres, the algorithm may not be able to generate a hypersphere
that correctly classifies a reasonable number of the remaining true -las keys (we use one-fourth as our rule)
without incorrectly classifying many false class keys. When this occurs, we use the basic Isodata clustering
algorithm [6] to divide the remaining true class keys into two clusters, ,nd then apply the minimum-cost HK
algorithm to each cluster separately. For difficult PR problems (for which this algorithm is intended) such
as the aircraft case study, we cluster after each hypersphere is computed.

3 2-D Example
lI this s5-ction we present results of our minimum-cost IIK alhrithm on two classes of 2-D featur'ecfrs.

This is done to provide a simple example of our procedure for a case in which the class boundaries can he
easily visua!ized. Figure 1 shows two class distributions with piecewise-circular decision 1,oundarif-s found
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Figure 1: Piecewise-circlar boundary found between two 2-D classes by the minimum-cost HK AP.

with the minimum-cost HK algorithm. The false class training vectors are depicted by squares, and the true
class training vectors are plotted as triangles, x's and crosses, depending on which LDF correctly classified
them. Since this example has only two classes, we compute circles for only one class as the true class (this
does not allow for a reject decision). To find circlar boundaries, we augment the 2-D feature vectors with
two elements as explained in Section 2.1. The minimum-cost HK algorithm sequentially computes three
LDFs describing the three circular boundaries in Figure 1. The final boundary between the two classes is
marked v~ith a heavy line. The resulting niinixuum-cost HK AP has a 3 x 4 memory matrix, with three
output elements (one for each circle) and four input elements (the original two elements plus two additional
ones). During recall, if any output element is positive, the input is classified as the true class. Otherwise,
the input is classified as the false class. Any inputs from the true class side of the heavy line in Figure 1 have
at least one positive output element. Any inputs from the false class side of the heavy line have all negative
output elements. The training set is classified with 100% accuracy. We have not included a test set because
our purpose is to give insight into how the class boundaries are generated.

We now detail how the minimum-cost ilK algorithm found the three LDFs. We fixed the true class costs at
1, and varied the false class costs to correctly classify all of the false class (squares) while correctly classifying
as many keys from the true class as possible. (In this two-class 2-D example, we attempt to correctly classify
all (not most) false class keys. In practical and complex applications (e.g. Section 4), we find hyperspheres
in which the number of false class errors does not exceed 5% of the number of true class keys correctly
classified.) Alter finding circle 1 and removing the correctly classified true class keys, we were unable to find
a false class cost that would correctly classify all of the false class keys and more than one-fourth of the true
class keys. This occurs because, as seen from Figure 1, the remaining true class keys (the x's and the crosses)
form two clusters on opposite sides of the false class distribution. We therefore use the Isodata clustering
algorithm to separate the true class keys into two clusters. Applying the minimum-cost HK algorithm to
the two clusters and to the false class keys produced circles 2 and 3 which correctly separated the x's as one
cduster and the crosses as another. For this example, we tried an average of three costs per circle. Because
the minimum-cost ilK algorithm requires only about 78 iterations per hypersphere (one minute) for this 2-D
example, we made little effort to minimize the number of costs tried.

4 3-D Di Aircraft Case Study
We consider three classes (DClIi, F4, F104) of 128 x 128 aircraft imagery. As a key vector representaion

space, we use 32 wedge samples of the Fourier transform intensity (in half of the transform plane). The
wedge feature space pros ides scale invariance (when the wedge samples are normalized) and shift invariance.
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Figure 2: Representative roll (vertical 0, -40*, -80*) and pitch (horizontal, 0", ±40", ±80*) views of DC10.

-Training Test Set K

DSNN 100 99 3267

Min-Cost HK-A 98.9 98.1 24
Min-Cost HK-B 97.4 97.1 18

Min-Cost Pseudoinverse 90.9 91.5 47
ACNN 91.4 92.3 24

Standard Linear HK 80.7 81.2- 3

Table 2: Classification accuracies for the three class aircraft case study for six different methods.

and is easily generated optically [7]. In-plane image rotations cause the wedge samples to circularly shift. We
postulate that the aircraft are moving and that tracking information provides the location of the aircraft's
nose. This allows the wedge samples from an unidentified aircraft to be circularly shifted so that they align
properly with the training vectors. Thus, for moving aircraft this feature space is rotation (in-plane), scale
and shift invariant. We use a training set of 3267 key vectors produced from the three aircraft rotated
out-of-plane in pitch and roll between ±80° at 50 increments. Figure 2 shows representative views of the
DCI0 to show the wide range of out-of-plane views we consider. The test set contains 3072 key vectors (not
present in the training set) produced from the three aircraft rotated in pitch and roll between ±77.5 at 5*
increments (i.e. at least 2.50 different in pitch and roll from the training data).

Table 2 gives classification accuracies for six different APs, with P,' defined to be the percentage of input
vectors correctly recalled. The five classification methods considered include the Direct Storage Nearest
Neighbor (DSNN) AP [8] (a nearest neighbor classifier expressed in AP matrix form), the minimum-cost
pseudoinverse and ilK APs, the Adaptive Clustering Neural Net (ACNN) [9] and a standard HK AP. All
five methods employ maximum selection of the output vector elements. (We consider a threshold for the
minimum-cost APs later.) For each of these APs, N = 33. There are 32 elements due to wedge features
and an additional element for each AP. For the minimum-cost APs, we require two additional elements but,
because the keys are normalized, the second additional element that equals the sum of squared key elements
always equals one and is therefore omitted. For the other APs, the additional element varies. The size of
each AP is thus K x 33, where K is given in Table 2.

We now consider the classification results of these APs. Although the DSNN AP is too large to be
practical (K = 3267). its excellent classification results indicate that the wedge feature space does-separate
the different classes into distinct clusters. Our ,ninimnum-cost IK APs (A and B) use 24 and 18 lyp'p eres.
which reduce the number of weight vectors by two orders of magnitude over the DSNIN Al' while still retaining
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Threshold Max Selection
I (L ieject ( ) I ' ) J ) 1 1

Train'ing S 3t 93.9 5.7 0.4 I 9 1.1
T est Set-1 92.5 6.8 0.7 98.1 1.91

TIable 3: Classification accuracies for minimum-cost IK-A AP using thresholding.

excellent recall accuracy. The minimum-cost 11K-A AP was computed according to the rules described in
Section 2. The AP synthesis time was about 75 CPU minutes on a Sun Sparcstation. An average of only two
trials for each hypersphere was needed to determine an acceptable cost. Running the IlK routine required
an average of 243 iterations. The minimum-cost 11K-B AP was created by eliminating the six hyperspheres
in the 11K-A AP containing the fewest training vectors (these hyperspheres are known from the original
training procedure). This is an example of the flexibility of the minimum-cost AP in adjusting the number
of hyperspheres (as discussed in Section 2.1). The smaller 11K-B AP memory matrix is achieved at the
expense of a slightly lower P. The minimum-cost H1K APs are clearly preferable to the minimum-cost
pseudoinverse AP, which requires twice the number of output elements in the 11K-A AP while yielding 6.6%
more errors in the test set. The ACNN used performs 5.8% worse than the minimum-cost 11K-A AP, even
though both classifiers use the same number of weight vectors (K = 24). We also used the standard HK
AP algorithm with conventional three-element unit vectors to denote each class. This gives a small AP with
K = 3, but significantly worse performance than the other APs.

The results in Table 2 for the minimum-cost APs were found by detecting the maximum output element,
rather than thresholding the output. Using a threshold for the minimum-cost 11K-A AP gave the results
shown in Table 3 (with P" defined to be the percentage of input vectors incorrectly recalled). These show a
large reduction (about 60%) in the test set errors due to the presence of a reject class. The reduction in P,
is obtained at the cost of about 5% lower P. The DSNN and ACNN methods could be modified to provide
a reject class, but we did not consider this.

In conclusion, our new AP gives 98% accuracy (comparable to the DSNN, but with a storage density
that is two orders of magnitude better). The minimum-cost H1K AP is attractive for reasons in addition to
its good performance and small matrix size. First, it automatically determines how many hyperspheres are
needed to represent each class, and hyperspheres containing only a small number of keys can be discarded.
Second, our AP offers a rejection capability that has rarely been addressed. Our minimum-cost APs also
function well with no rejection (detecting the maximum output element), if that is desired.
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ABSTRACT

We consider high capacity mean square error (MSE) associative processors (APs) and the first
use of multiple APs. The application considered is multi-class distortion-invariant pattern recognition
(PR).

1. INTRODUCTION

APs are attractive solutions for difficult PR problems. Section 2 reviews the three APs we
consider. Section 3 describes our multi-class distorted object database and PR problem chosen.
Section 4 describes the feature space input AP neuron representation space we use (feature space
neurons are needed to reduce the number of neurons required, to provide some distortion invariance
and to reduce the training set size needed). Section 5 presents initial results (these show the need
for multiple APs). Section 6 advances our multiple AP concept and Section 7 notes our conclusions.

2. ASSOCIATIVE PROCESSORS

Figure 1 shows the AP matrix-vector (M-V) processor considered and the dimensions of the
matrix (M), the input (x), and output (y) vectors where M x = y and M is the number of stored vector
pairs. The solution for M must satisfy Y = M X, where the columns of X and Y are the k and Yk training
vectors. We consider MSE heteroassociative processors, since they allow useful solutions when M
> N, which is essential for an AP to be competitive.

We consider 3 APs (Table 1). The first two use the pseudoinverse solution M = Y X+. For M4,Y
and M is large (Mx N) as is y (its dimension is K = M). Since the y are unit vectors and Y is the
identity matrix, we denote this AP matrix as Mr.

The second AP uses a small K = C sized output vector y (where the y are unit vectors and C is the
number of distored object classes that must be identified). Since we only require the class of the
object, we can use small y and M (which we denote by Mu for unit vector).

The final AP considered is the DSNN where M is the data matrix denoted by MD.
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3. PR CASE STUDY AND DATABASE

The problem we chose in multi-class PR is the recognition of the class of 10 different aircraft
(Figure 2) when multiple 3-D distortions in roll, pitch, and yaw are present (Figure 3). We divide this
large problem into 4 cases (Table 2) containing M = 168-432 images (with 28-72 images per class,
each being a different distorted view with different ranges for Ox and 0 ). In Database 1, the 6 aircraft
include 2 from each of the 3 groupings in Figure 2. In Database 2, we omit the 747 from Database 1.
In Database 3, we add 24 additional 747 images (those aspect views that gave errors in Database 1
tests). Database 3 is nearly in-plane data. Database 4 contains larger 3-D distortions.

4. INPUT NEURON SPACE

The input neuron space for x must have various properties. It should be large (N large) but
reasonable to allow more storage M. The feature space used must be easily calculated, should
maintain the same dimensionality for distorted inputs (this precludes the use of our earlier string-
code feature space), should be in-plane distortion-invariant (to reduce the size M of the training set
required, and hence to increase storage capacity), and most of all it must be shift-invariant (or M will
radically increase).

N

x- " M Y

Rgure 1: AP rotation/architecture.

The feature space used was the chord angles s and lengths L from the centroid of the object to
the object's contour. The angles p were chosen to yield equal lengths along the boundary. Figure 4
shows on and Ln for two contour lines (shown dotted). The centroid was obtained easily from 2
projections. The chords are normalized by the longest Ln. The reference angle tp is the one
associated with the longest chord. This feature space is shift, scale and in-plane rotation invariant
and is easily calculated from the Hough transform and (0,s) string code we described earlier. It is
similarly robust. Figures 5-8 show an input object and its L, io and (L,O) feature spaces.

5. INITIAL AP TEST RESULTS

The classification accuracy Pc in Database 1 is shown in Figure 9 for the three APs using 8 values
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MIOUTI'UT IS UNIT VECTIOR (KI LO)NG)

MIATRIX LARGE (M x N)
ONE "I" DENOTES WHICH OF Mh INPUTS PRESENT
E.G. C=G CLASSES, 72 IAGES OF EACII, M= 432
OUTPUT (LOCATION OF -I-) DENOTES CLASS AND ORIENTATION

FIRST 72 OUTPUTS FOR CLASS I, NEXT 72 FOR CLASS 2, ETC
MX=Y, Y=*I=IDENTITY MATRIX HAM

M U OUTPUT IS UNIT VECTOR (K=C SHORT)
SAME UNIT VECTOR FOR EACH CLASS
NO ORIENTATION INFORMATION
E.G. C=6 CLASSES, OUTPUT VECTOR y OF LENGTH 6
SMALL MEMORY SIZE, UNIT VECTOR HAM

MD DATA MATRMX M=XT

THIS IS M+ IF x ARE OTHONORMAL

Table 1: Three APs considered.

(a) US.military aircraft: (1) B57 (2) F104 (3) F105 (4) Phantom

(b) Foreign military ircraft: (1) hliG21 (2) Mirage

(c) Commercial airiners: (1) B727 (2) 8747 (3) DC1O (4) Swearingen

Figure 2: Ten aircraft used in 3 groupings.
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S (Starting Point)
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ZN

Oz (yaw) -
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ex (pitch) LN IAN
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0(roll)
y

Y O(Centroid)

Figure 3: Rotation angles in 3-0 Figure 4: Feature space.

Database Description Number of Images M

6 aircraft M=432
1 1200 / 100 = 12 angles Ox

and 600 /10 0= 6 angles 0y (72 images per class)

M=360
5 aircraft2 (NO B747) (72 images per class)

6 aircraft M=168

3 7 angles x (-300 to 30 0)

and 4 angles ey (00 to 300) (28 images per class)

6 aircraft M=216

4 12 angles x (-600 to 50 0) 36 images per class)
and 3 anglesey (40 0 to 600 )

Table 2: Four databases used.

for N (N 18, 36, 72, 144, 288, 432, 576 and 864) with M = 432. We show PC versus N/M (storage
capacity). As seen, all APs yield perfect results for N > 2M/3 = 288 dimension input keys (hence
high dimension key vector spaces are most useful). To properly evaluate an AP for distortion
invariant PR, we test it on test data (intermediate views at 5 intervals not present in the training set).
Figure 10 shows the results obtained. We note that we achieve the best performance for N/M - 1/3
or for N - M/3 = 144 dimension vectors when M = 432 inputs were stored. We note that reasonable
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C,6

0,2

I II
0 20 40 60 so 100 120 140 160

Figure 5: Input DC-10 (Ox=5 0°,Oy=20", Figure 6: Chord length (L) space
z=60 ) for feature space example N 144 chords

,i 0 0. 41,11.11I

0.: 1 0 60 0.10210
N 1d
0 <.2.

0 20 AO 60 so0 100 120 140 I 6 . 0 20 40 0 0 O t 0 1 0 1 0

Figure 7: Chord angle ( )space Figure 8: (L,Ob) space 40 f.c inyb r5

N = 144 chord angles

performance is obtained for M U up to M 2N (and that performance PC drops near M - N as is
expected).

6. IMPROVED PERFORMANCE AND USE OF MULTIPLE APs

We note that the range of maximum correct largest peak values was large (for M = 432, N = 144 or
a large storage of M - 3N) and thus maximum selection (WTA) is required at the output. We also note
that the AP with Mu is required at the output. We also note that the AP with Mu gave a larger minimum
than the other APs (thus smaller dimension recollection vectors y are preferable as are used in Mu).
Figure 11 shows a typical AP output with one large peak.

We tested these APs for the number of input and matrix levels required (Table 3) and see that the
MU associative processor is preferable (for size etc.) as its P varies little with as few as 256 levels
in the AP matrix and input vector. To improve performance of the Mu associative processor, we
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Figure 9: PC for three APs vs. N/M Figure 10: PC for three APs vs. N/M
for Database 1 (training images) for Database 2 (test images)

0.5-

0.4-

0.3-

> 0.2-
CDClO F 104 MiG21 B747 Phantom Miragce

CL 0.11
E

l.DC10 64 0 0 6 2 0
0.0- F104 0 63 1 1 3 4

MiG21 1 0 71 0 0 0
B747 0 1 1 52 14 4
Phantom 0 1 0 3 67 1
Mirage 0 3 2 0 2 65

-0.2 I I
0 50 100 I50 200 250 30 350 400

Output Vector Component

Figure 11: Typical M, output showing element Figure 12: Confusion matrix
47 (DC1 0with 9x=35", 0y=35 and

oz=240" ) as the input object

formed the confusion matrix (Figure 12) and noted that most errors (20 out of 50) occurred for the
B747 and that most other errors (in Mu and M,) generally occurred for highly distorted inputs (near the
maximum ox and 0y).

We thus formed a number of new APs with no 747 images (these are simply too similar to other
aircraft) and obtained excellent results (Table 4) with PC approaching 99.7% for high M/N ratios for

both training and test data. This leads to our proposed solution (Figure 13) to such large class
(multi-class) pattern recognition problems with severe distortions. This novel approach uses multiple
APs (as noted in the second rank(column)). We estimate the orientation of the input (from moments,
projections, etc.). We separate the objects into ranges of distortions using separate APs for each
(thus making each AP easier and with better performance). The final rank 3 (column 3) APs determine
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a

Machine 4096 2048 1024 512 256 128 64
Precision Levels Levels Levels Levels Levels Levels Levels

M 1 96.1% 96.1% 94.9% 92.6% 72.2% 36.3% 22.5% 19.9%

M u 88.4% 88.4% 88.2% 87.7% 88.2% 86.3% 79.2% 43.5%

Table 3: Effects of quantization of matrix and input in our APs.

MEMORY CLASS RANGE OF PEAKS VALUES Pc In-Plane
Associative
Processor

FULL TRAINING 0.36-1.26 98.4% o, rBS

M=432 TESTING 0.29-2.1 88.4% Orienaton

A s s o c i a t i v e A s s o c i a t i v e

NO B747 TRAINING 0.4-1.26 99.7% Processor Processor
Class I

M=360 TESTING 0.5-1.35 93.3% INPUT Orientation
RAN4C3-* Estimation

SideA Orientation
IN-PLANE TRAINING 0.4-1.25 99.4% Associative Associative

M=168 TESTING 0.37-1.5 91.7% Processor ProcessorClass N

OUT-OF- TRAINING 0.41-1.23 99.1%
PLANE TESTING 0.355-1.55 94.0% Asoftie

M=216 Processor

Table 4: APs with 747 images omitted Figure 13: Multiple AP concept for large
(showing much better results). multi-class severe distortion PR.

the orientation and class of the input object. One can extend this concept to determining other class
designations (commercial, military, etc.) of the aircraft.

7. SUMMARY

We have shown that large capacity (M > N) APs are possible. We feel that APs with M > N are
essential for competitive performance. We found them to give excellent (Pc = 92-99%) performance
on a very severely distorted large multi-class distorted object problem and to allow excellent
quantization to 128 matrix and input vector levels (allowing analog AP accuracy via analog VLSI or
optical realizations).
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